The g Factors and Defect Structure of Orthorhombic Dy^{3+} Ions in CdF_2 Crystals

Hui-Ning Dong^a, Shao-Yi Wu^b, Wei-Dong Chen^c, and Deng-Feng Li^{a,b}

- ^a Institute of Applied Physics, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
- b Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- ^c Institute of Solid State Physics, Sichuan Normal University, Chengdu 610066, P. R. China

Reprint requests to Dr. H.-N. D.; E-mail: donghn@cqupt.edu.cn

Z. Naturforsch. **61a**, 87 – 90 (2006); received November 11, 2005

The electronic paramagnetic resonance g factors g_x , g_y and g_z of an orthorhombic Dy^{3+} center in CdF_2 are studied by the perturbation formulae of the g factors for a $4f^9$ ion in orthorhombic symmetry. In these formulae, the contributions to g factors due to J-mixing among the ground ${}^6H_{15/2}$, the first excited ${}^6H_{13/2}$ and the second excited ${}^6H_{11/2}$ states via crystal-field interaction, lead to admixtures among the states with the same J-value via spin-orbit coupling. In addition, the admixtures between the lowest Kramers doublet $\Gamma \gamma$ and other 20 Kramers doublets Γx within the states 6H_J (J=15/2, 13/2 and 11/2) via crystal-field and orbital angular momentum interactions are considered. In the above orthorhombic center, the impurity Dy^{3+} is associated with co-doped crystals with alkali metal ions in the [110] axis. By analyzing the g factors, we find that the impurity Dy^{3+} ion does not reside in the ideal Cd^{2+} site but moves towards the co-doped alkali metal ion along the [110] direction by a displacement $\Delta Z \approx 0.272$ Å.

Key words: Crystal-Field Theory; Electron Paramagnetic Resonance; Superposition Model; Dy³⁺; CdF₂.